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I.  INTRODUCTION 

The thrust of a rocket is produced by the high-speed discharge of 
gases to the rear of the rocket.  In effect, the rearward linear momen- 
tum of the rocket gases is balanced by an increased forward momentum 
of the rocket.  In the case of a rocket with pitching and yawing 
motion, these gases also possess angular momentum in pitch and yaw and 
a careful dynamics analysis shows a damping of the pitching and yawing 
motion associated with this gaseous angular momentum.  This pitch jet 
damping is usually fairly small.  For Army rocket-assisted projectiles 
(RAPs), it is completely negligible. 

A spinning RAP ejects gases with spin angular momentum and the 
effect of this lost angular momentum should be considered.  In this 
report an expression for the spin jet damping of a rocket is derived 
and the size of this effect is computed for two Army RAPs:  the 155mm 
M549 and the 8-inch M650.  The predicted change in spin will then be 
compared with actual flight measurements made by sunsondes with onboard 
telemetry transmitters1-2. 

II.  THEORY 

We will use the usual nonrolling aeroballistic x, y z axes with 
the x-axis along the rocket's axis of symmetry and the z-axis 
selected to be initially downward-pointing.  If the rocket is flying at 
zero angle of attack, the only aerodynamic force acting on the rocket 
is the drag force F . For small angles of attack and sideslip, the x- 

component of this force is F = |F | . The x-component of the linear 

momentum of the rocket body plus propellant at time t will be denoted by 
A ft"). The derivative of A will then be equal to-F^ plus the x- 
x x n       D 
component of the gravity force. 

Witt-iam H.  Mevmagen}   "Measurements of the Dynamic Behavior of 
Projectiles over Long Flight Paths," Journal of Spacecraft and 
Rockets 8,  April 1971,  pp.   380-385.     (See also Ballistic Research 
Laboratories Memorandum Report No.   2079,   November 1970,  AD  717002.) 

Charles H.  Murphy,   "Effect of Large High-Frequency Angular Motion 
of a Shell on the Analysis of Its Yawsonde Records, " Ballistic 
Research Laboratories Memorandum Report No.   2581,  February 1976, 
AD B009421L. 



A = - F+ m g (1) 
x     D    sx K J 

It is very important to note that the derivative in Equation (1) 
is the rate of change of linear momentum for the constant-mass system 
of rocket plus propellant and must be calculated with care. At time 
t + At the rocket has a mass m + Am (where Am is negative) and an x- 

component of velocity, u + Au. A mass of propellant gas, - Am , has 
separated from the rocket and is traveling away from the rocket in the 
exhaust jet with a velocity x-component uT relative to the rocket. 

The new linear momentum is, therefore. 

A (t ) + AA = (m + Am) (u + Au) + (- Am) (u +  u )     (2) 
x  Q     x J 

where 

A ft ) = m u 
x1" (T 

Equation (2) is divided by At and the limit as At ->■ 0 is taken to 
obtain A . This result can be substituted in Equation (1) to yield 

m u = FT - FD + m gx (3) 

where 

F = m u     is the x-component of the thrust 
T    J of the rocket. 

This simple derivation of rocket thrust has been done so that we 
can see the proper way to estimate the jet effect on the angular motion 
of the rocket.  If the components of the angular momentum of the rocket 
are (H , H~, H~), the angular motion must satisfy the following vector 

differential equation: 

(Hx, ft-, H~z)   * (0, q, r) X (Hx, H~, Hg) = (Mx, M~, M-) (4) 



We will assume that the rocket grain burns symmetrically so that the x- 
axis remains an axis of mass symmetry and the transverse moments of in- 
ertia remain equal. The angular momentum of the solid part of the 
rocket is then 

and at time t 
0 

!S = ^x P' lt  *'   lt ^ ^ 

ft = (H , H~, H~) v x  y  z 

= (Ix p + hx, It q + h~, lt f + h~)     (6) 

where the his are the angular momentum components of the gas in the 

rocket motor. 

At time t + At, the angular momentum of the solid part has slight- 

ly changed and some propellant gas of mass - Am has been emitted from 
the nozzle, but the small change in the angular momentum of the gas in 
the motor will be neglected. 

The angular momentum h, of the emitted gas can be expressed as a 

sum of volume elements: 

VXi(V ^ Pj ^01) (7) 

where R , V and p are, respectively, the position, velocity and 

density of the jet of propellant gas in the particular volume element 

iL =   (x,  R cose,   R sine) (8) 

VJ = tv V ^ ^ 

ACVol)   =  R AR AB   Ax (10) 



and where R and 9 are polar coordinates.  In the time interval At, the 
emitted gas forms a disk of thickness Ax = u At and radius equal to 

that of the rocket nozzle exit, R , located a distance X from the 
. ,. n n 

projectile cm. 

M        J n J  ^'--, 
o   o 

hT = pT Ax  f n f (R(wT cose -- vT sine) , 

R u, sine - X wT , (11) 
J       n J 

X vT - R uT cose )R dR de 
n J     J 

The transverse motion of the exhaust gases is assumed to be the sum of 
the pitching motion of the nozzle and a rotationally symmetric circum- 
ferential motion due to projectile spin. 

vT = f X    - p R    f(R)   sine (12) J n      r    n     *■  ^ 

where 

wT=-qX    +pR    f(R)   cose (13) Jnnrn 

R = R/R 
n 

f(0)   = 0,   f(l)   =  1 

Equations (12-13) allow the angular momentum of the gas emitted in the 
time interval At to be written in a very simple form. 

hj = CRj F p, Xj 4, Xj r) (- Am) (14) 



where 
,1 

F = 2 62 f(R) dR 

Equation (14) now allows us to compute the change in angular 
momentum of the system. 

H    +  AH    =   (I     +  AI  )Cp +  Ap)   + h     -   (R2  F  Am)p (15) 
x xx x    r r x n r 

H~   +  AH,   =   (I     +  AI  )(q +  Aq)   + h~  -   (X2  Am)q (16) 
y y t t y n 

H~ +  AH~ =   (1^   +  AI   )(f +  Ar)   + h~   -   (X2     Am)f 
z zvt t zn 

(17) 

Equations (15-17) can be simplified by Equation (6), divided by 
At, and the limit taken as At -> 0 to yield the derivatives of the 
angular momentum components. Then Equation (4) becomes 

I    p+qh~-rh~=J    p+M 
xrnz y        pr        x 

(18) 

It(q + i r)  - i  (Ix P + hx)(q + i f) - Jq(q + i f) + (M, + i M-) 

where 

J    = m R2  F -  I 
p n x 

(19) 

J    = m X2  -   1^ q n t 



The small terms in the angular momentum of the motor gas are usually 
neglected so that the only effects of the propellant gases on the 
angular motion of the rocket are the time-varying moments of inertia, 
the spin jet damping, J p, and the pitch jet damping, J  [q + i f) . 

III.  DISCUSSION 

J is the derivative of the change in pitch moment of inertia of q or 

the propellant gases and is negative. Thus this term damps the pitch- 
ing motion, producing the well-known pitch jet damping effect. As we 
shall see, for Army RAPs the pitch jet damping moment is much smaller 
than the aerodynamic damping moment and has no measurable effect on the 
pitching motion. 

If we assume that the radial variation in circumferential velocity 
is linear like that of a spinning rigid body, then ffR) = R and F = 1/2. 
For this case, J is the derivative of the change in spin moment of 

inertia of the propellant gases.  Since J is positive, this term 

represents a spin jet undamping.  Since it is unreasonable to expect 
the spin angular momentum of the emitted gases to drop to the low value 
associated with f(R) = R, this value yields a maximum value of J and 

we would expect the actual value to be less. 

J    =erj) ,0<e<l (20) p v p-^max  »       -      - 

where 

(J ) = m  (R2/2)   -  I 
p^max ^ n     -^ x 

The aerodynamic moment contains a spin damping term in p and a 
pitch damping term in q + i f.  In order to compare the aerodynamic 
terms with the jet damping terms we will nondimensionalize the jet 
damping moments in the same way that the aerodynamic moments are non- 
dimensionalized3 . 

3. Charles H.  Murphy,   "Free Flight Motion of Syrmetrio Missiles, " 
Ballistic Research Laboratories Report No.   1216,  July 1963, 
AD 442757. 

10 



J = 
p (Jr)p v s ^2 cj (21^ 

Jq=(^)p VS e  Cj (22) 

In Table 1 the average values of i , I . m and other appropriate 

parameters are given for two rocket-assisted projectiles, the 155mm 
M549 and the 8-inch M650.  According to this table, the pitch jet 
damping coefficient is much smaller than the aerodynamic pitch damping 
coefficient and can be neglected, but the spin jet damping coefficient 
is the same size as the aerodynamic spin damping coefficient.  We 
would therefore expect the spin to be affected by this term during 
burning. 

Another way to estimate the effect of the spin jet damping is to 
consider Equation (18) for no aerodynamic moment and neglecting h~ and 
h~. Y z 

K-ft) 
where 

Y can be computed from the table and is 0.90 and 0.87 for the M549 and 
M650, respectively.  Thus the percentage change in spin during burning 
can be approximately related to the percentage change in the spin 
moment of inertia. 

0.046e       (M549) 

0.033e       (M650) 

11 



TABLE 1.  PARAMETERS FOR TWO ROCKET-ASSISTED PROJECTILES 

burn-time (s) 

155mm M549 

2.68 

8-inch M650 

2.95 

m (kg/s) 

i  (kg-m2/s) 

- 1.12 

.00285 

- 1.86 

,00714 

it (kg-m2/s) ,0379 ,0803 

Rn (m) .0222 .0317 

Xn Cm) ,326 .365 

V (m/s) 481 603 

,0112 ,0113 

CM +CM. 
q    a. 

-13.2 -11.9 

p/max 
.019 .012 

,61 ,34 

12 



IV.  EXPERIMENTAL RESULTS 

Recently yawsonde data have been obtained4-5 for the spin during 
burning of both the M549 and the M650.  Sample spin histories for each 
RAP are given in Figure 1.  The spin curve before burning was extended 
through burning and the percentage change in spin during burning was 
determined.  It was 1.9% for the M549 and 1.7% for the M650.  These 
values correspond to e values of 0.41 and 0.52, respectively. 

V.  SUMMARY 

1. The derivation of rocket thrust and pitch jet damping has 
been reviewed. 

2. A theoretical model for spin jet damping has been derived 
which predicts a percentage increase in spin proportional to the per- 
centage decrease in the spin moment of inertia. 

3. Experimental results show approximately 2% increase in spin, 
which is about half the predicted maximum increase. 

4. Anders S.  Platou,   "Yawsonde Flights of ISSrm Non-Conioal Boattail 
Projectiles and the 155mm MS49 Projectile at Tonopah Test Range— 
October 1977" USA ARRADCOM Ballistic Research Laboratory Memorandum 
Report No.  ARBRL-MR-02881,  November 1978,  AD A06S356. 

5. Vural Oskay,   Wallace H.   Clay and Martin Klawa,   "8-Inah PXR 6263 
(Temperature Instrumented M650 RAP) Tests at Yuma Proving Ground, " 
USA ARRADCOM Ballistic Research Laboratory Memorandum Report No. 
ARBRL-MR-03037,  August 1980. 

15 
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q    a 

LIST OF SYMBOLS 

x-coraponent of the linear momentum of the rocket 
body-plus-propellant system 

(1/2) p V S £2 

(1/2) p V S £2 

roll damping moment coefficient 

sum of the damping moments 

(1/2) p V2 S £ (q2 + f2)^ 

rl 
R2 f(R) dR 

0 

\K 

D drag force 

T 

f(R) 

m uT , x-component of the rocket thrust 

differentiable function of R, where f(0) = 0, 

f(l) = 1 • 

x-component of gravity acceleration 

angular momentum of the rocket 

angular momentum of the solid part of the rocket 

H , H~, H~ 
x  y  z 

aeroballistic system components of H 

17 



LIST OF SYMBOLS 
(Continued) 

h angular momentum of the gas in the exhaust jet 

h , h~, h~ aeroballistic system components of the angular 
momentum of the gas in the rocket motor 

I , 1^. axial and transverse moments of inertia x  t 

J m R2 F - I = (£/V) • spin jet damping moment 

J m X2 - 1 = O/V) • pitch jet damping moment 

reference length 

M , M~, M~ aeroballistic components of the aerodynamic moment 

m mass of the rocket body-plus-propellant system at 
time t 

0 

p, q, r rocket spin, pitch and yaw rates in the aero- 
ballistic system 

R polar distance coordinate, 0 < R < R r j   _   _  n 

R R/Rn 

R position vector of the gas in the exhaust jet 

R radius of the rocket nozzle exit 
n 

S reference area 

t time 

u x-component of the velocity of the rocket body- 
plus-propel lant system at time t 

18 



LIST OF SYMBOLS 
(Continued) 

u , v , w aeroballistic system components of V 
J  J  J J 

V magnitude of the velocity vector 

->- 
V- velocity of the gas in the exhaust jet relative to 

the rocket 

x, y, z nonrolling aeroballistic axes, with the x-axis 
along the rocket's axis of symmetry and the z- 
axis initially downward 

X distance from the rocket cm. to the rocket 
nozzle exit 

J      /I p j max / x 

Am the change in mass of the rocket body-plus-pro- 
pellant system in the time interval At 

e a nondimensional constant in the range 0 to 1 

6 polar angular coordinate 

p air density 

p, density of the gas in the exhaust jet 

Subscript: 

( ) value at f(R) = R, F = 1/2 v Jmax K  J ' 

19 
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